
When Two Languages Are
Simpler Than One

Lessons for SES from
Cajita, Original-Caja, and Valija

Mark S. Miller

Simultaneous Problems

 D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Simultaneous Solution?

 D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Secure microkernel OSDOTCajita
Secure Linux/WindowsdOTcOriginal-Caja

Don’t try this at home (or at all)

 D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Secure microkernel OSDOTCajita
Secure Linux/WindowsdOTcOriginal-Caja

Separate Solutions

 D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem

Virtual Machine OTCValija
Secure microkernel OSDOTCajita

Layered Solutions

 D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem
V = Virtualizability problem

+ VMM + policy glue logicDOTCVValija on Cajita
Virtual Machine OTCValija
Secure microkernel OSDOT VCajita*

Lessons for SES

 D = Defensive code problem
O = Offensive code problem
T = Legacy tools problem
C = Legacy code problem
V = Virtualizability problem

+ VMM + policy glue logicDOTCVSafer scripting
Virtual Machine OTC~Harmony-strict
Secure microkernel OSDOT VSES

Proposed SES Goals

 SES is smallest secure subset of ~Harmony-
strict without loss of functionality.

 SES is a good target for a multiply
instantiable embedding of ~Harmony-strict.

+ VMM + policy glue logicDOTCVSafer scripting
Virtual Machine OTC~Harmony-strict
Secure microkernel OSDOT VSES

Questions?

Freeze Primordials

Hide Sharp Objects = Cajita

Cajita + Implementation

Replace with per-gadget toy knives

Valija on Cajita Impl

Valija Impl on Cajita Impl

